443 research outputs found

    From Bloch model to the rate equations II: the case of almost degenerate energy levels

    Get PDF
    Bloch equations give a quantum description of the coupling between an atom and a driving electric force. In this article, we address the asymptotics of these equations for high frequency electric fields, in a weakly coupled regime. We prove the convergence towards rate equations (i.e. linear Boltzmann equations, describing the transitions between energy levels of the atom). We give an explicit form for the transition rates. This has already been performed in [BFCD03] in the case when the energy levels are fixed, and for different classes of electric fields: quasi or almost periodic, KBM, or with continuous spectrum. Here, we extend the study to the case when energy levels are possibly almost degenerate. However, we need to restrict to quasiperiodic forcings. The techniques used stem from manipulations on the density matrix and the averaging theory for ordinary differential equations. Possibly perturbed small divisor estimates play a key role in the analysis. In the case of a finite number of energy levels, we also precisely analyze the initial time-layer in the rate aquation, as well as the long-time convergence towards equilibrium. We give hints and counterexamples in the infinite dimensional case

    Colloidal brazil nut effect in sediments of binary charged suspensions

    Full text link
    Equilibrium sedimentation density profiles of charged binary colloidal suspensions are calculated by computer simulations and density functional theory. For deionized samples, we predict a colloidal ``brazil nut'' effect: heavy colloidal particles sediment on top of the lighter ones provided that their mass per charge is smaller than that of the lighter ones. This effect is verifiable in settling experiments.Comment: 4 pages, 4 figure

    Coherent Control for a Two-level System Coupled to Phonons

    Full text link
    The interband polarizations induced by two phase-locked pulses in a semiconductor show strong interference effects depending on the time tau_1 separating the pulses. The four-wave mixing signal diffracted from a third pulse delayed by tau is coherently controlled by tuning tau_1. The four-wave mixing response is evaluated exactly for a two-level system coupled to a single LO phonon. In the weak coupling regime it shows oscillations with the phonon frequency which turn into sharp peaks at multiples of the phonon period for a larger coupling strength. Destructive interferences between the two phase-locked pulses produce a splitting of the phonon peaks into a doublet. For fixed tau but varying tau_1 the signal shows rapid oscillations at the interband-transition frequency, whose amplitude exhibits bursts at multiples of the phonon period.Comment: 4 pages, 4 figures, RevTex, content change

    Time evolution of a quantum many-body system: transition from integrability to ergodicity in thermodynamic limit

    Full text link
    Numerical evidence is given for non-ergodic (non-mixing) behavior, exhibiting ideal transport, of a simple non-integrable many-body quantum system in the thermodynamic limit, namely kicked tVt-V model of spinless fermions on a ring. However, for sufficiently large kick parameters tt and VV we recover quantum ergodicity, and normal transport, which can be described by random matrix theory.Comment: 4 pages in RevTex (6 figures in PostScript included

    Numerical Evidence of Luttinger and Fermi Liquid Behaviour in the 2D Hubbard Model

    Full text link
    The two dimensional Hubbard model with a single spin-up electron interacting with a finite density of spin-down electrons is studied using the quantum Monte Carlotechnique, a new conjugate gradient method for the evaluation of the Edwards wavefunction ansatz, and the standard second order perturbation theory. We performed simulations up to 242 sites at U/t=4U/t=4 reaching the zero temperature properties with no ``fermion sign problem'' and found a surprisingly good accuracy of the Edwards wavefunction ansatz at low density or low doping. The conjugate gradient method was then applied to system up to 1922 sites and infinite UU for the Edwards state. Fermi liquid theory seems to remain stable in 2D for all cases studied with the exception of the half filling case where a ``Luttinger like behavior'' survives in the Hubbard model , yielding a vanishing quasiparticle weight in the thermodynamic limit.Comment: 10 pages + 4 pictures, RevTex, SISSA 121/93/CM/M

    Effect of Finite Impurity Mass on the Anderson Orthogonality Catastrophe in One Dimension

    Full text link
    A one-dimensional tight-binding Hamiltonian describes the evolution of a single impurity interacting locally with NN electrons. The impurity spectral function has a power-law singularity A(ω)ωω01+βA(\omega)\propto\mid\omega-\omega_0\mid^{-1+\beta} with the same exponent β\beta that characterizes the logarithmic decay of the quasiparticle weight ZZ with the number of electrons NN, ZNβZ\propto N^{-\beta}. The exponent β\beta is computed by (1) perturbation theory in the interaction strength and (2) numerical evaluations with exact results for small systems and variational results for larger systems. A nonanalytical behavior of β\beta is observed in the limit of infinite impurity mass. For large interaction strength, the exponent depends strongly on the mass of the impurity in contrast to the perturbative result.Comment: 26 pages, RevTeX, 7 figures included, to be published in Phys. Rev.

    Transport Properties of One-Dimensional Hubbard Models

    Full text link
    We present results for the zero and finite temperature Drude weight D(T) and for the Meissner fraction of the attractive and the repulsive Hubbard model, as well as for the model with next nearest neighbor repulsion. They are based on Quantum Monte Carlo studies and on the Bethe ansatz. We show that the Drude weight is well defined as an extrapolation on the imaginary frequency axis, even for finite temperature. The temperature, filling, and system size dependence of D is obtained. We find counterexamples to a conjectured connection of dissipationless transport and integrability of lattice models.Comment: 10 pages, 14 figures. Published versio

    The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems

    Full text link
    The magnetisation relaxations of three different types of geometrically frustrated magnetic systems have been studied with the same experimental procedures as previously used in spin glasses. The materials investigated are Y2_2Mo2_2O7_7 (pyrochlore system), SrCr8.6_{8.6}Ga3.4_{3.4}O19_{19} (piled pairs of Kagom\'e layers) and (H3_3O)Fe3_3(SO4_4)2_2(OH)6_6 (jarosite compound). Despite a very small amount of disorder, all the samples exhibit many characteristic features of spin glass dynamics below a freezing temperature TgT_g, much smaller than their Curie-Weiss temperature θ\theta. The ageing properties of their thermoremanent magnetization can be well accounted for by the same scaling law as in spin glasses, and the values of the scaling exponents are very close. The effects of temperature variations during ageing have been specifically investigated. In the pyrochlore and the bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a certain temperature TpT_p re-initializes ageing and the evolution at the new temperature is the same as if the system were just quenched from above TgT_g. However, as the temperature is raised back to TpT_p, the sample recovers the state it had previously reached at that temperature. These features are known in spin glasses as rejuvenation and memory effects. They are clear signatures of the spin glass dynamics. In the Kagom\'e compound, there is also some rejuvenation and memory, but much larger temperature changes are needed to observe the effects. In that sense, the behaviour of this compound is quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings of the International Conference on Highly Frustrated Magnetism (HFM2003), August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France

    Exact calculation of spectral properties of a particle interacting with a one dimensional fermionic system

    Full text link
    Using the Bethe ansatz analysis as was reformulated by Edwards, we calculate the spectral properties of a particle interacting with a bath of fermions in one dimension for the case of equal particle-fermion masses. These are directly related to singularities apparent in optical experiments in one dimensional systems. The orthogonality catastrophe for the case of an infinite particle mass survives in the limit of equal masses. We find that the exponent β\beta of the quasiparticle weight, ZNβZ\simeq N^{-\beta} is different for the two cases, and proportional to their respective phaseshifts at the Fermi surface; we present a simple physical argument for this difference. We also show that these exponents describe the low energy behavior of the spectral function, for repulsive as well as attractive interaction.Comment: 22 pages + 1 postscript figure, REVTE

    Integrability and coherence of hopping between 1D correlated electrons systems

    Full text link
    We present numerical evidence that the hopping of electrons between chains described by the tJt-J model is coherent in the integrable cases (J=0J=0 and J=2J=2) and essentially incoherent otherwise. This effect is {\it not} related to the value of the exponent α\alpha, (which is restricted to the interval [0,1/8] when 0J20\le J\le 2), and we propose that enhanced coherence is characteristic of integrable systems.Comment: 9 pages, LateX, 4 figures in uuencoded format, submitted to Phys. Rev. Let
    corecore